312 research outputs found

    Rapid Wireless Capacitor Charging Using a Multi-Tapped Inductively-Coupled Secondary Coil

    Get PDF
    This paper presents an inductive coupling system designed to wirelessly charge ultra-capacitors used as energy storage elements. Although ultra-capacitors offer the native ability to rapidly charge, it is shown that standard inductive coupling circuits only deliver maximal power for a specific load impedance which depends on coil geometries and separation distances. Since a charging ultra-capacitor can be modeled as an increasing instantaneous impedance, maximum power is thus delivered to the ultra-capacitor at only a single point in the charging interval, resulting in a longer than optimal charging time. Analysis of inductive coupling theory reveals that the optimal load impedance can be modified by adjusting the secondary coil inductance and resonant tuning capacitance. A three-tap secondary coil is proposed to dynamically modify the optimal load impedance throughout the capacitor charging interval. Measurement results show that the proposed architecture can expand its operational range by up to 2.5 × and charge a 2.5 F ultra-capacitor to 5 V upwards of 3.7 × faster than a conventional architecture.Semiconductor Research Corporation. Interconnect Focus Cente

    REVIEW AND REALIGNMENT OF THE NAVY’S IN-SERVICE, CONVENTIONAL ORDNANCE LOGISTICS SUPPLY CHAIN (NAVSUP AMMUNITION LOGISTICS CENTER)

    Get PDF
    The purpose of the research conducted was to identify the main contributing factor for inaccurate inventory validity within the ordnance community. Our research question addresses the current organizational structure of the ordnance supply chain and its overall effectiveness by evaluating the leading cause for discrepancies of inventory validity throughout the fleet. Our methods included gathering data from 12 months of overaged intransit messages, researching current organizational structures for ordnance stakeholders, and examining instructions governing supply chain processes. Our results produced data which illustrated that on average $34.2M of ordnance was overaged and not accounted for each month. It was determined that the unaccounted ordnance is the number one cause of unfavorable inventory validity. We recommend that by reorganizing the ordnance supply chain under one overarching command, inventory validity can be increased by creating positional authority from a singular source, eliminating competing interests and decreasing ambiguity from separate authorities. Additionally, realigning the command structure enables oversight for standardization of business practices within one streamlined organization.Lieutenant Commander, United States NavyLieutenant Commander, United States NavyLieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    A 440pJ/bit 1Mb/s 2.4GHz multi-channel FBAR-based TX and an integrated pulse-shaping PA

    Get PDF
    A 2.4GHz TX in 65nm CMOS defines three channels using three high-Q FBARs and supports OOK, BPSK and MSK. The oscillators have -132dBc/Hz phase noise at 1MHz offset, and are multiplexed to an efficient resonant buffer. Optimized for low output power ≈-10dBm, a fully-integrated PA implements 7.5dB dynamic output power range using a dynamic impedance transformation network, and is used for amplitude pulse-shaping. Peak PA efficiency is 44.4% and peak TX efficiency is 33%. The entire TX consumes 440pJ/bit at 1Mb/s.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    Multi-channel 180pJ/b 2.4GHz FBAR-based receiver

    Get PDF
    A three-channel 2.4GHz OOK receiver is designed in 65nm CMOS and leverages MEMS to enable multiple sub-channels of operation within a band at a very low energy per received bit. The receive chain features an LNA/mixer architecture that efficiently multiplexes signal pathways without degrading the quality factor of the resonators. The single-balanced mixer and ultra-low power ring oscillator convert the signal to IF, where it is efficiently amplified to enable envelope detection. The receiver consumes a total of 180pJ/b from a 0.7V supply while achieving a BER=10-3 sensitivity of -67dBm at a 1Mb/s data rate.Semiconductor Research Corporation. Interconnect Focus CenterNatural Sciences and Engineering Research Council of Canada (Fellowship

    A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    Get PDF
    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.Semiconductor Research Corporation. Interconnect Focus CenterSemiconductor Research Corporation. C2S2 Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants

    Get PDF
    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited close to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8-1.1 V) usable by CMOS circuits in the sensor. A pW charge pump circuit is used to minimize the leakage in the boost converter. Furthermore, ultralow-power control circuits consisting of digital implementations of input impedance adjustment circuits and zero current switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself, and a duty-cyled ultralow-power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18- μm CMOS process.Semiconductor Research Corporation. Focus Center for Circuit and System Solutions (C2S2)Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation)National Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    Energy extraction from the biologic battery in the inner ear

    Get PDF
    Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear [superscript 1, 2]. Here we demonstrate that the mammalian EP can be used as a power source for electronic devices. We achieved this by designing an anatomically sized, ultra-low quiescent-power energy harvester chip integrated with a wireless sensor capable of monitoring the EP itself. Although other forms of in vivo energy harvesting have been described in lower organisms [superscript 3, 4, 5], and thermoelectric [superscript 6], piezoelectric [superscript 7] and biofuel [superscript 8, 9] devices are promising for mammalian applications, there have been few, if any, in vivo demonstrations in the vicinity of the ear, eye and brain. In this work, the chip extracted a minimum of 1.12 nW from the EP of a guinea pig for up to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40–360 s. With future optimization of electrode design, we envision using the biologic battery in the inner ear to power chemical and molecular sensors, or drug-delivery actuators for diagnosis and therapy of hearing loss and other disorders.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    Correction to “Using altimetry to help explain patchy changes in hydrographic carbon measurements”

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835

    Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System

    Get PDF
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017
    corecore